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CRYSTAL STRUCTURE AND INFORMATION THEORY

BY DAN MCLACHLAN, JR.

STANFORD RESEARCH INSTITUTE, MENLO PARK, CALIFORNIA

Communicated by Henry Eyring, June 9, 1958

I. Introduction.-From the standpoint of "information theory" as set forth by
Shannon,1 Shannon and Weaver,2 Brillouin,3 and others and more particularly from
the viewpoint of "description mechanics,"4 the study of crystal structures using
X-ray data involves the consideration of three models. These models have a point-
by-point relationship with one another as follows: (1) the crystal is called the
"describee," (2) the diffraction pattern is a "code" which is to be deciphered, and
(3) the proposed structure (or solution) is a "replica" which should have a direct
similarity to the describee.
The basic assumption in this type of study is that no more information can be

gained than is contained in the diffraction pattern. The "descriptive capacity" of
the crystal as a describee and of the diffraction pattern as a code can be computed,
and thus the adequacy of the diffraction pattern in describing the crystal can be
estimated. The methods for making such estimations will be illustrated in the
following paragraphs through the use of a one-dimensional diffraction pattern.

II. The Describee.-Following the methods of description mechanics, we first
draw a line whose length represents the length a of a single crystallographic unit
cell in the x direction. Then we mark the distance a into N equal intervals which
we call "description boxes." These description boxes each have dimension Ax =
a/N. This distance, Ax, represents the accuracy with which we wish to locate the
atoms in the unit cell. If we know from other sources that there are M identical
atoms per unit cell, then the descriptive capacity of the crystal is the number of
ways of placing M atoms in N boxes with no more than one atom per box. If we
were dealing with point atoms, the descriptive capacity xc' would be

M N!
M!(N-M1)!()

But, since atoms occupy volumes that greatly exceed the limits of accuracy, another
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more appropriate equation has been devised. Assuming that each atom occupies r
boxes, the descriptive capacity co, is

rNIT (N/r)! (aid)!
= M! (N/r - M)! (d/A)M!(aM/d-M)! (2)

where d is the diameter of an atom.
III. The Code.-The data from the diffraction pattern can describe the crystal

structure, provided that the descriptive capacity of the diffraction pattern equals
or exceeds that of the crystal. The diffraction pattern furnishes the Miller indices
h and the absolute magnitudes of the amplitudes | FI, which represent the structure
through the equation

P(x) = E Ff cos (27rhx - ah) + -V (3)
V h V

where p(x) is the electron density at the point x, V is the volume of the unit cell,
and ah is the phase angle of the diffracted wave. Usually, in practical work, the
accuracy of measuring amplitudes cannot be expressed as a percentage; but the
value F 1,, assigned to the weakest visible maximum is the increment of inaccuracy
for all maxima. Therefore, this increment could be called a "diffraction slug" and
the number, S),, of them in a diffraction spot is Sh = | Ft |/ F IW. The total number
in the entire diffraction pattern is

ZIjFhj
h IFJW

Fortunately, the diffraction pattern is by nature divided into "diffraction boxes"
or distances in reciprocal space and the number of such boxes is simply H, the num-
ber of diffraction maxima or spots. If this problem were simply that of comput-
ing the number of ways of placing S slugs in H boxes without regard to the num-
ber per box, then the descriptive capacity Csd"' of the diffraction pattern would be

,,, (H + S- 1)!
(H- 1)!S!

However, two additional things must be considered. The first of these is the
phase angle which might be estimated by some means with an assumed accuracy of
27r/fl; and the number of ways of classifying H boxes into v classes is bHe Thus
Wc"' should be altered to

itd = vH(H + )S - (5)Wd (H -1)! 8!
5

The second correction that must be made is to take care of the fact that diffrac-
tion maxima cannot assume unlimited values, but each value is limited to F,, <
Mf,,, whereM is, as before, the number of atoms in the unit cell and f, is the atomic
scattering factor in the direction prescribed by h and the wave length X. The
values of f, are readily available in published tables as a function of (sin O)/X = h/2a.
Calling the maximum value of S,,, Q,,, a special alteration was derived for equa-
tion (4):
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[H-i1

ad R[LQ (Qh + h)] (H - 1)!' (6)

and the first correction jH still has to be applied. So the restricted descriptive
capacity of the diffraction pattern is

WXd LhII (Qh + h)J (H-i)! (7)

It is interesting to note that equation (7) reduces to equation (5) when the upper
limits, Qh, for Sh are all identical and as high as possible, i.e.,

Qi= Q2= * Qh S.

IV. Comparison of Describee and Code.-If the diffraction data are adequate for
determining the structure, then (see eqs. [2] and 17])

Xce (Wd

or

(d/ AX)ad Raid)! [H11i
M/!(a/d-M)! < H7h (Qh + h) (H )! (8)

Equation (8) can be used for either one or two purposes: (a) to determine the
accuracy of Ax in locating atoms,

AX ~d[(a/d) !]Idla 9

Ax - [wdM!(a/d-M)!]dIa(
or (b) to determine how many phases; q, are yet to be estimated in order to attain
a given accuracy Ax. This is done by replacing H by q in the qH term of equation
(8) and solving for q, thus:

Xc = vloWd

or
q = In (wc/Wd)/ln a.

V. Past Efforts.-The use of these tests on actual crystal structures and their
X-ray data as reported in the literature confirms the belief that has been held by
crystallographers for two decades, "the X-ray data oversolves the structure." This
implies that there are relationships between the magnitudes of the F values that
determine the phases. The Patterson6 method combined the Fhk 12 values and
the knowledge of atoms to derive a structure. The Harker-Kasper6 inequalities
derived certain phase relationships strictly on the basis of the F values, while
Wrinch,7 Buerger,8 McLachlan,9 Clastre and Gay,10 and the others who developed
the methods of shifted Patterson maps demonstrated that certain symmetrical
structures can be solved by using only the magnitudes of the F values, provided
that one through-center interatomic vector can be established. Harker and
McLachlan" showed the principles of phase determination implied by the methods
of shifted Patterson products. The extensive work of Karle and Hauptman,'2, 13

as well as the writings of Goedkoop,14 all confirm the same faith. Methods devised
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by Sayre,'5 Zachariasen,16 and others are further examples; and the use of simul-
taneous equations proposed by Robertson17 shows promise.

VI. A Suggestion.-To show that much can be learned about the signs of the F
values from little data other than the magnitudes of F, we shall demonstrate a
principle based on gambling. If a structure is symmetrical, only two values of
ah need be considered, 0 and 1800, so that

p~)-2 F0o10
P(X) = E 4 FhI cos 27rhx + (10)

if the value of p(O) were known, for example; then

2 Fo
v h V

or

V Fo
+ F| P(°) * (11)h 2 2

With the Fh I values known, there are limitations on the choice of the 4 signs
which permit the sum to add up to the known value (V/2)p(0) - Fo/2. The worst
possible case would be where all Fh values were equal. This is analogous to a
penny-tossing game in which F dollars are won when heads appear and F dollars
are lost when tails appear. After H throws of the penny, the net gain or loss is
determined by the prevalence of heads, HH, or tails, HT, where

HH+ HT= H.

This is similar to the equation of a straight line shown in Figure 1,

x+y = a.

The number of kinds of sequences of heads and tails in H tosses is equal to the
number of paths from the point 0 to the line HH, where only moves to the right
and upward are permitted. This number is c, = 2H, while the number of ways of
getting HH heads and HT tails is

H!
w(HH, HT) = H!HT! (12)

These results are shown for H = 7 in Figure 1, and, since there are usually many
ways of getting HH heads and HT tails, knowing the final score does not uniquely
specify the sequence of wins and losses.

However, if the bets on each throw are different, as shown in Figure 2, then
knowing the score implies a knowledge of the sequence of wins and losses.

Since Fh | values in structure studies are inclined to be varied, much can be
learned about their signs from knowing the density p(x) at one or more points. For
example,

V F0
E F4 = - [P(O) + P('/2) + 2p('/4)] - - (13)

h 8 2
h =4n
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7

C-7'4S,3-33

FIG. 1.-The straight line HH plotted from the equation HH + HT = H for H = 7,
representing the results in a penny-tossing game with equal bets on each toss. The
dots on each diagonal line show the results after each toss, and the curve HAH shows a
graph of the number of ways of attaining the final result, using equation (12). For
example, there are 21 ways to win two times and lose five times in seven throws. Note
that a knowledge of the score does not uniquely reveal the sequence of the game.

and

Z + Fhj = - [p(O) + P(1/2) - 2p(1/4)]. (14)
h 8

h =4n+2

The values of Fh shown in Figure 2 were taken from Sayre's discussion of his
hypothetical structure. The same types of figures are also useful in studying
Sayre's inner products in his squaring method of phase determination.

In order to solve for the most probable set of signs for the F values when no
densities are known, it is necessary to assume a most probable density at some
point and compute the compound probabilities of the combined densities at other
points. These techniques will not be developed in this paper.

VII. Resolution in Multiple Describees.-In the above discussions little emphasis
was placed on the fact that a crystal contains many identical unit cells, each one of
which qualifies to be called a describee. This brings up the question, is the resolu-
tion improved by having a repeating pattern as compared to a single pattern?
Physical optics teaches that the ultimate resolution to be expected when viewing a
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FIG. 2.-The results of tossing a penny seven times with a different bet for each
throw. In this example (in contrast to that in Fig. 1) a knowledge of the final score
does define the sequence of heads and tails. If the final terminus is at B, there is one
and only one sequence of plays which can produce it. In arriving at B, one is guided
by the fact that the dotted lines BC and BD cannot be crossed. This gives rise to dead
ends, indicated by interrupted arrows. The data were taken from Sayre's15 hypo-
thetical structure. All phases of Fh for h = 4n are predicted, see eq. (13). (NoTE: In
general, this determinism is maintained only if the first, second, third, etc., differences
between bets are different.)

single pattern with radiation of wave length X is X/2; while experimental X-ray
structure analysts commonly report accuracies in locating atoms to 0.01 A and oc-
casionally 0.003, using copper radiation with wave length X = 1.54 A. A crystal
having mosaic blocks only 900 A on an edge and unit cells of 3 A, for example, has
300 unit cells on an edge or 2.7 X 107 unit cells in the volume. One might guess
that the linear resolution might be 1.54/(2 X 300) = 0.00256 for this case, but this
has not been proved.
However, the superior resolution in repeating patterns was implied previously

(see section III) when the assumption was made that the descriptive capacity
Wd of the diffraction pattern is a function of Sh = Fh 1/J F 1t. The value of I F JKno
i.e., the weakest diffraction maximum, is influenced by the conditions of measure-
ment of the integrated intensity, E,
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E oX3 e2 )2 1 + Cos 2IF2? 2 N2AV, (15)
W ~mc2) 2 sin 20

where AV is the volume of the crystal contributing. The larger AV is, the greater
and more reliable is Ehkj, and hence smaller F |. are recorded, thus increasing all
Sh terms. This can also be shown either by the methods outlined by McLachlan"'
for resolution in diffraction patterns or by suggestions in the work of McLachlan
and Christ.19
A neat way of demonstrating the combined information capacity of a multiple

pattern is shown in Figure 3, a, b, and c. A page of 100 3-cent U.S. postage stamps
is shown in Figure 3, a, taken on grainy film. An enlargement of a single one of
this set is presented in Figure 3, b, to show the poor resolution. The negative of
Figure 3, a, was placed on the traveling stage of a microscope, and a multiple ex-
posure of 25 separate stamps out of the group of 100 was impressed on the same
photomicrographic plate, each at 1/25 of the exposure time used for Figure 3, b.
The result is shown in Figure 3, c. While Figure 3, a, might have a number of silver
grains distributed between the 100 (or less) pictures to make a well-resolved picture,
there are too few per picture. Figure 3, c, shows the combined effect of all the
grains from 25 pictures influencing one picture. The details are better resolved.
This is in accordance with the use of Poisson's law for predicting resolution as a
function of silver-grain concentration. Computations indicate that the linear
resolution should be proportional to the square root of the number of silver grains
per unit area; and therefore Figure 3, c, should have five times the resolution of
Figure 3, b.
The principles demonstrated by the postage-stamp experiment should prove to

be very useful. If an electron micrograph of the face of a single crystal could be
obtained showing the unit cells but not clearly enough to reveal the molecules or
atoms, then the above procedure of combining the information of all the cells into
one should result in an increased resolution of from tens to hundreds, depending
upon the number of unit cells photographed on the crystal face and upon the accu-
racy of superposition.

VIII. Conclu8ions.-In conclusion, one may deduce from information theory
that the X-ray data are usually sufficient for the solution of crystal structure. The
solution of the problems of phase determination lies in the relationships between the
magnitudes of the F values. Also, information theory (or description mechanics)
points the way to extending the resolution of detail in electron micrographs of crys-
tals.

The author is grateful for special funds for fundamental research furnished by
the Stanford Research Institute.
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ON THE EUCLIDEAN STRUCTURE OF RELATIVISTIC FIELD THEORY

BY JULIAN SCHWINGER
HARVARD UNIVERSITY, CAMBRIDGE, MASSACHUSETTS

Communicated June 2, 1958

The nature of physical experience is largely conditioned by the topology of
space-time, with its indefinite Lorentz metric. It is somewhat remarkable, then,
to find* that a detailed correspondence can be established between relativistic
quantum field theory and a mathematical image based on a four-dimensional Eu-
clidean manifold. The situation can be characterized in the language of group
theory, with physical quantities and states appearing as representations of the
undellying Lorentz transformation group. It is well known that some represen-
tations of the Lorentz group can be obtained from the attached Euclidean group
(the "unitary trick" of Weyl). What is being asserted is that all representations
of physical interest can be obtained in this way.
The objects that convey this correspondence are the Green's functions of quan-

tum field theory,' which contain all possible physical information. We consider
a general Hermitian field, x, which decomposes into a Bose-Einstein field 0, and a
Fermi-Dirac field q/. The Green's functions can be defined as vacuum-state ex-
pectation values of time-ordered field operator products. There are two types:

G+(xi ... x5) = ((x(xi) ... x(xp))+ )E+(xs ... x,)
and

G_(xi ... X.) = ((x(X) ... X(Xs))-) E-(x, xi),
where positive or negative time ordering implies an assignment of multiplication
order in accordance with the ascending sense of time, as read from right to left
(+) or from left to right (-). The quantities e, are antisymmetrical functions
of the time co-ordinates for the F.D. fields, which assume the value +1 when the
time-ordered sense coincides with the written order. The connection between the
two Green's functions is simply
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